1.DamID
DNA腺嘌呤甲基轉(zhuǎn)移酶相互作用檢測(cè)
DamID允許在活細(xì)胞中鑒定蛋白質(zhì)結(jié)合位點(diǎn)而無(wú)需交聯(lián)或免疫沉淀。它在2006年作為微陣列方法開發(fā),然后才適應(yīng)NGS (Vogel等,2006)。
DamID涉及由DNA腺嘌呤甲基轉(zhuǎn)移酶(Dam)和感興趣的染色質(zhì)蛋白組成的融合蛋白的低水平表達(dá)。該融合蛋白靶向染色質(zhì)蛋白的天然結(jié)合位點(diǎn),其中Dam甲基化周圍DNA中的腺嘌呤。隨后,分離甲基化的DNA片段,通過(guò)選擇性PCR擴(kuò)增,并測(cè)序。
好處:
允許在活細(xì)胞中鑒定蛋白質(zhì)結(jié)合位點(diǎn),而無(wú)需交聯(lián)或免疫沉淀
提供算法 (Li et al。,2015)
缺點(diǎn):
可能有毒
模仿千字節(jié)大小的area
2.DNase I SIM
DNase I簡(jiǎn)化植物的核 - 核方法
該方法是專門用于植物的簡(jiǎn)化DNase I方案(Cumbie等,2015)。它包含在DNase I消化之前在Percoll梯度中進(jìn)行細(xì)胞核純化的額外步驟,以更有效地去除細(xì)胞碎片和淀粉顆粒。使用T4 DNA聚合酶的DNA末端拋光步驟在DNA酶I消化后直接在細(xì)胞核中進(jìn)行。這些額外的步驟消除了對(duì)凝膠純化及其伴隨的材料損失的需要。
好處:
不需要凝膠純化
缺點(diǎn):
僅針對(duì)植物進(jìn)行了優(yōu)化
3. MNase-SEQ /
微球菌核酸酶測(cè)序/微球菌核酸酶_輔助分離核小體/分離的核小體測(cè)序/分離的核小體測(cè)序
微球菌核酸酶(MNase)來(lái)源于金黃色葡萄球菌,其用于確定染色質(zhì)結(jié)構(gòu)的歷史可以追溯到1975年,當(dāng)時(shí)該方法被稱為各種核葡萄球菌核酸酶或微球菌核酸酶消化細(xì)胞核或染色質(zhì) (Sollner-Webb et al。, 1975) (Axel等,1975)。隨著NGS的出現(xiàn),MNase消化 (Schones等人,2008) 變得更加流行,并且終創(chuàng)造了術(shù)語(yǔ)MNase-Seq (Kuan等人,2009)。術(shù)語(yǔ)MNase輔助分離核小體測(cè)序(MAINE-seq) (Cusick等,1981) (Ponts等,2010),Nucleo-Seq (Valouev等,2011)和Nuc-seq (Chodavarapu等,2010) 不常用。與目的蛋白融合的MNase也已用于鈣依賴性切割以研究體內(nèi)特定的基因組基因座(ChEC-seq) (Zentner等,2015)。
在MNase-Seq中,用MNase處理gDNA。保護(hù)染色質(zhì)蛋白結(jié)合的序列免受MNase消化。接下來(lái),提取來(lái)自DNA-蛋白質(zhì)復(fù)合物的DNA并用于制備測(cè)序文庫(kù)。深度測(cè)序可準(zhǔn)確表示基因組中調(diào)節(jié)DNA結(jié)合蛋白的位置 (Schones等,2008)
好處:
可以繪制核小體和其他DNA結(jié)合蛋白 (Zentner等,2012)
足跡亞核小體顆粒可保護(hù)低至約25 bp (Henikoff等,2011)
識(shí)別基因組中各種調(diào)節(jié)蛋白的位置
涵蓋廣泛的監(jiān)管網(wǎng)站
缺點(diǎn):
MNase位點(diǎn)可能不占整個(gè)基因組
AT依賴性序列偏倚 (Kensche等,2016)
MNase與ChIP數(shù)據(jù)的整合對(duì)于鑒定和區(qū)分相似的蛋白質(zhì)結(jié)合位點(diǎn)是必要的
4.X-ChIP
高分辨率交聯(lián)染色質(zhì)免疫沉淀測(cè)序
交聯(lián)染色質(zhì)免疫沉淀(X-ChIP)是染色質(zhì)研究的基礎(chǔ)技術(shù) (Breiling等,2001) (Negre等,2001)。隨著NGS的出現(xiàn),這種簡(jiǎn)單的技術(shù),現(xiàn)在稱為X-ChIP-seq,能夠產(chǎn)生高分辨率的結(jié)果(Skene等,2015)。
該方法包括在室溫下用含1%甲醛的細(xì)胞中染色質(zhì)結(jié)合的DNA交聯(lián)10分鐘。洗滌細(xì)胞并重懸于裂解緩沖液中。在MNase消化后,通過(guò)短暫超聲處理使染色質(zhì)溶解,然后進(jìn)行染色質(zhì)免疫沉淀。提取DNA,富集短片段,并用于制備測(cè)序文庫(kù)。
好處:
單基分辨率
缺點(diǎn):
超聲處理可能引入序列偏差 (Teytelman et al。,2009)
無(wú)論持續(xù)時(shí)間如何,都能捕獲蛋白質(zhì)-DNA相互作用 (Zentner等,2015)
5.ORGANIC
從親和純化的天然分離的染色質(zhì)占據(jù)基因組的區(qū)域
有機(jī)物是一種溫和的方案,可避免交聯(lián)和超聲處理 (Kasinathan等,2014)。該方法是MNase-Seq和天然ChIP的組合,其提供復(fù)雜真核基因組中染色質(zhì)占據(jù)區(qū)域的圖譜。
好處:
避免超聲偏差 (Teytelman et al。,2009)
避免交聯(lián)偽影 (Zentner等,2014)
缺點(diǎn):
蛋白質(zhì)的溶解性可能很差 (Zentner et al。,2014)
MNase序列偏倚 (Kensche等,2016)
細(xì)胞核隔離可能會(huì)引入偽影
其他實(shí)驗(yàn)室沒(méi)有復(fù)制
6.CATCH-IT
共享附件標(biāo)簽以捕獲組蛋白并識(shí)別營(yíng)業(yè)額
CATCH-IT是一種測(cè)量全基因組核小體轉(zhuǎn)換動(dòng)力學(xué)的直接方法 (Deal et al。,2010)。在該方法中,用甲硫氨酸替代物疊氮高丙氨酸(Aha)簡(jiǎn)單處理細(xì)胞,其將生物素與含有新?lián)饺氲慕M蛋白的核小體偶聯(lián)。標(biāo)記的染色質(zhì)用鏈霉抗生物素蛋白進(jìn)行親和純化,嚴(yán)格洗滌以除去非組蛋白,并使用平鋪微陣列進(jìn)行分析。
好處:
可以確定整個(gè)基因組中核小體轉(zhuǎn)換的差異
缺點(diǎn):
潛在的人工制品
7.ChIP-Seq/HT-ChIP/ChIP-exo/Mint-ChIP
染色質(zhì)免疫沉淀測(cè)序/高通量ChIP /核酸外切酶修剪ChIP /多重ChIP
ChIP-Seq是一種成熟的方法來(lái)繪制特定的蛋白質(zhì)結(jié)合位點(diǎn) (Solomon等,1988)。它產(chǎn)生了大量的衍生物,如AHT-ChIP-Seq (Aldridge等,2013),BisChIP-Seq (Statham等,2012),CAST-ChIP(Schauer等,2013)。,芯片BMS (Li等人。,2011),芯片BS-SEQ (Brinkman等人,2012),ChIPmentation (的Schmidl等人,2015) ,刪除片 (Rotem公司等人,2015) ,薄荷-ChIP (van Galen等,2016),PAT_ChIP (Fanelli等,2011),reChIP-seq (Truax等,2012),scChIP-seq(Rotem等,2015)和X-ChIP (Skene等,2014)。順序ChIP-seq(reChIP)也可以顯示染色質(zhì)上不同蛋白質(zhì)的關(guān)聯(lián) (Elsasser等,2015)。在該方法中,DNA-蛋白質(zhì)復(fù)合物在體內(nèi)交聯(lián)。接下來(lái),將樣品片段化并用外切核酸酶處理以修剪未結(jié)合的寡核苷酸。蛋白質(zhì)特異性抗體用于免疫沉淀DNA-蛋白質(zhì)復(fù)合物。提取,純化和測(cè)序DNA,得到蛋白質(zhì)結(jié)合位點(diǎn)的高分辨率序列。
好處:
蛋白質(zhì)結(jié)合位點(diǎn)的堿基對(duì)分辨率
可以繪制特定的調(diào)節(jié)因子或蛋白質(zhì)
外切核酸酶的使用消除了未結(jié)合DNA的污染 (Zentner等,2012)
缺點(diǎn):
非特異性抗體可稀釋感興趣的DNA-蛋白質(zhì)復(fù)合物庫(kù)
目標(biāo)蛋白必須是已知的并且能夠產(chǎn)生抗體
8.HITS-FLIP
采用熒光配體相互作用分析的高通量測(cè)序
HiTS-FLIP是一種在的深度測(cè)量定量蛋白質(zhì)-DNA結(jié)合親和力的技術(shù)。在該方法中,內(nèi)置于高通量測(cè)序儀中的光學(xué)器件用于可視化蛋白質(zhì)與流動(dòng)細(xì)胞中測(cè)序的DNA的體外結(jié)合 (Nutiu等人,2011)。
通過(guò)合成對(duì)具有錨定的單鏈DNA的微流體流動(dòng)細(xì)胞進(jìn)行測(cè)序。剝離第二鏈DNA并使用Klenow聚合酶和未修飾的dNTP重建以形成雙鏈DNA簇。以不同濃度引入熒光標(biāo)記的結(jié)合蛋白,并對(duì)結(jié)合進(jìn)行成像。
好處:
量化和全面
缺點(diǎn):
需要專門的硬件
尚未被科學(xué)界廣泛采用
9.Chem-seq
識(shí)別被小化學(xué)分子束縛的位點(diǎn)
Chem-seq可用于檢測(cè)小分子配體(如治療藥物)與基因組相關(guān)蛋白的結(jié)合。該信息可以提供關(guān)于小分子藥物對(duì)細(xì)胞功能的擾動(dòng)的重要見(jiàn)解 (Anders等,2014)。
Chem-seq方法使用2種方法。在活細(xì)胞中,添加生物素化的藥物以允許藥物 - 靶標(biāo)結(jié)合。將復(fù)合物與甲醛交聯(lián),將細(xì)胞裂解并超聲處理,并將復(fù)合物捕獲在鏈霉抗生物素蛋白珠上。將富集的DNA片段純化并測(cè)序。對(duì)于體外分析,將生物素化的藥物加入細(xì)胞提取物中,并按照體內(nèi)方法進(jìn)行剩余的步驟。
好處:
可應(yīng)用于生命,人體細(xì)胞
缺點(diǎn):
創(chuàng)建生物素衍生物可能會(huì)改變藥物活性
10.FAIRE-seq/Sono-Seq
甲醛輔助分離調(diào)節(jié)元件/交聯(lián)染色質(zhì)的超聲處理
FAIRE-seq (Giresi等,2009) (Hogan等,2006) 和Sono-Seq (Auerbach等,2009) 基于DNA和核小體或序列特異性DNA結(jié)合蛋白之間交聯(lián)效率的差異。 。在該方法中,使用甲醛在體內(nèi)簡(jiǎn)單地交聯(lián)DNA-蛋白質(zhì)復(fù)合物。然后將樣品裂解并超聲處理。苯酚提取后,純化水相中的DNA并測(cè)序。測(cè)序提供了未被組蛋白占據(jù)的DNA區(qū)域的信息。
好處:
簡(jiǎn)單且高度可重復(fù)的協(xié)議
不需要抗體
不需要酶,如DNase或MNase,避免酶處理所需的優(yōu)化和額外步驟
不需要單細(xì)胞懸液或核分離,因此很容易適用于組織樣本 (Simon et al。,2012)
缺點(diǎn):
無(wú)法識(shí)別與DNA結(jié)合的調(diào)節(jié)蛋白
DNase-Seq可能更好地鑒定高表達(dá)基因的核小體缺失啟動(dòng)子 (Song et al。,2011)
11. ATAC-SEQ
轉(zhuǎn)座酶 - 可及的染色質(zhì)測(cè)序/ ATAC-seq的測(cè)定針對(duì)血細(xì)胞進(jìn)行了優(yōu)化
ATAC-Seq使用Tn5轉(zhuǎn)座體檢測(cè)基因組的無(wú)核小體區(qū)域 (Buenrostro等,2013)。該方法是常用的,并且優(yōu)化的方案可用于組織,例如血液(Fast-ATAC) (Corces等人,2016),神經(jīng)元 (Milani等人,2016),生物樣本標(biāo)本 (Scharer等人,2016)。 )和單細(xì)胞(scATAC-seq (Buenrostro等,2015)和單細(xì)胞ATAC-seq (Cusanovich等,2015))。
在該方法中,將gDNA與Tn5轉(zhuǎn)座體一起溫育,其在開放的染色質(zhì)區(qū)域中將其片段化并同時(shí)添加銜接子。純化區(qū)域的深度測(cè)序提供了基因組中無(wú)核小體區(qū)域的堿基對(duì)分辨率。
好處:
兩步方案,無(wú)適配子連接步驟,凝膠純化或交聯(lián)反轉(zhuǎn)
與FAIRE-Seq相比,信噪比高
缺點(diǎn):
在機(jī)械樣品處理過(guò)程中,結(jié)合的染色質(zhì)區(qū)域可能會(huì)打開并被轉(zhuǎn)座組標(biāo)記
只有一半的分子含有PCR擴(kuò)增所需方向的銜接子
適配子位點(diǎn)之間的距離可能不是PCR擴(kuò)增的選擇 (Sos et al。,2016)
12.CHIA-PET
配對(duì)末端標(biāo)簽測(cè)序的染色質(zhì)相互作用分析
ChIA-PET具有免疫沉淀步驟以繪制長(zhǎng)程DNA相互作用,類似于Hi-C (Li等人,2010) (Fullwood等人,2009)。在該方法中,DNA-蛋白質(zhì)復(fù)合物被交聯(lián)和片段化。特異性抗體用于免疫沉淀目的蛋白質(zhì)。將具有*條形碼的兩組接頭以分開的等分試樣連接到DNA片段的末端,然后基于接近度自連接。沉淀DNA等分試樣,用限制酶消化,并測(cè)序。深度測(cè)序提供了連接片段的堿基對(duì)分辨率。Hi-C和ChIA-PET目前在人類基因組中提供較好的分辨率平衡和合理的覆蓋率,以繪制遠(yuǎn)距離相互作用(Dekker等,2013)。
Tang等人(Tang等人,2015)發(fā)表了一種改進(jìn)的方案,稱為或長(zhǎng)讀取ChIA-PET 。該方法用2個(gè)半接頭和單個(gè)生物素化的接頭連接取代2個(gè)單獨(dú)的連接反應(yīng)。接下來(lái),將去交聯(lián)的純化的DNA片段化,并使用Tn5轉(zhuǎn)座酶在一個(gè)步驟中連接銜接子。后,對(duì)DNA進(jìn)行PCR擴(kuò)增和測(cè)序 (Sati et al。,2016)
好處:
適用于檢測(cè)大量長(zhǎng)程和短程染色質(zhì)相互作用 (Sajan等,2012)
研究特定蛋白質(zhì)或蛋白質(zhì)復(fù)合物的相互作用
公共ChIA-PET數(shù)據(jù)集可通過(guò)ENCODE項(xiàng)目獲得 (Consortium等,2011)
去除傳統(tǒng)ChIP分析過(guò)程中產(chǎn)生的背景
免疫沉淀步驟降低了數(shù)據(jù)復(fù)雜性
缺點(diǎn):
需要大量原料,通常至少1億個(gè)細(xì)胞 (Mumbach等,2016)
非特異性抗體可以降低不需要的蛋白質(zhì)復(fù)合物并污染池
連接子可以自我連接,產(chǎn)生關(guān)于真正DNA相互作用的模糊性
靈敏度有限; 可以檢測(cè)到少至10%的相互作用
13.3-C
染色質(zhì)構(gòu)象捕獲測(cè)序
3C-Seq (Duan等人,2012),Capture-C和Hi-C (Lieberman-Aiden等人,2009) 包括用于分析染色質(zhì)相互作用的一系列方法。Capture-C使用磁珠將生物素化片段的額外下拉添加到3C方法中。可以使用Capture-C方法(NG Capture-C)的新改進(jìn) (Davies等,2016)。Hi-C方法將3C-Seq擴(kuò)展到全基因組染色質(zhì)接觸圖,并且它也已應(yīng)用于原位染色質(zhì)相互作用的研究(Sati等,2016) (Rao等,2014)。
在該方法中,DNA-蛋白質(zhì)復(fù)合物與甲醛交聯(lián)。將樣品片段化,并用限制酶提取,連接和消化DNA。對(duì)得到的DNA片段進(jìn)行PCR擴(kuò)增和測(cè)序。深度測(cè)序提供了連接片段的堿基對(duì)分辨率。
好處:
允許檢測(cè)遠(yuǎn)距離DNA相互作用
高通量方法
缺點(diǎn):
檢測(cè)可能是由隨機(jī)染色體碰撞引起的
不到1%的DNA片段實(shí)際上產(chǎn)生了連接產(chǎn)物 (Bourgo等,2016)
由于多個(gè)步驟,該方法需要大量的起始材料
14.4C-seq
圓形染色質(zhì)構(gòu)象捕獲
4C (Zhao等人,2006),(Simonis等人,2006),也稱為4C-seq,是類似于3C的方法,有時(shí)稱為圓形3C。它允許無(wú)偏見(jiàn)地檢測(cè)與特定感興趣區(qū)域相互作用的所有基因組區(qū)域(Sajan等,2012)。在該方法中,使用甲醛交聯(lián)DNA-蛋白質(zhì)復(fù)合物。將樣品破碎,連接并消化DNA。得到的DNA片段自我環(huán)化,然后進(jìn)行反向PCR和測(cè)序。深度測(cè)序提供了連接片段的堿基對(duì)分辨率。
好處:
評(píng)估各個(gè)基因組位點(diǎn)的DNA接觸譜的優(yōu)選策略
高度可重復(fù)的數(shù)據(jù)
缺點(diǎn):
將錯(cuò)過(guò)感興趣區(qū)域的本地交互(<50 kb)
大圓圈不能有效放大
15.5C
染色質(zhì)構(gòu)象捕獲碳復(fù)制
5C (Dostie等人,2007) 允許同時(shí)確定多個(gè)序列之間的相互作用,并且是3C的高通量版本 (Sajan等人,2012)。在該方法中,使用甲醛交聯(lián)DNA-蛋白質(zhì)復(fù)合物。將樣品片段化并連接DNA并用限制酶消化。使用連接介導(dǎo)的PCR擴(kuò)增得到的DNA片段并測(cè)序。深度測(cè)序提供了連接片段的堿基對(duì)分辨率。
好處:
與4C不同,5C為許多對(duì)站點(diǎn)提供了交互頻率矩陣 (de Wit et al。,2012)
可用于重建較大基因組區(qū)域的(平均)3D構(gòu)象
缺點(diǎn):
需要監(jiān)管站點(diǎn)的先驗(yàn)信息 (Sati et al。,2016)
檢測(cè)可能不一定意味著由隨機(jī)染色體碰撞引起的相互作用
無(wú)法擴(kuò)展到需要大量引物的全基因組研究
16.PB_seq
蛋白質(zhì)/ DNA結(jié)合后跟隨高通量測(cè)序
PB_seq是一種DNA結(jié)合分析,可以在沒(méi)有染色質(zhì)的情況下在全基因組范圍內(nèi)表征DNA蛋白結(jié)合能量景觀 (Guertin等,2012)。它屬于通常通過(guò)指數(shù)富集(SELEX)系統(tǒng)進(jìn)化配體的方法家族 (Ozer等,2014)。對(duì)基因組DNA進(jìn)行超聲處理,大小選擇和純化。在與DNA結(jié)合蛋白雜交后,分離,提取蛋白質(zhì)結(jié)合的DNA并制備用于測(cè)序。
好處:
確定與染色質(zhì)結(jié)構(gòu)無(wú)關(guān)的結(jié)合效率
缺點(diǎn):
尚未被科學(xué)界廣泛采用
17.Pu-seq
聚合酶使用測(cè)序
Pu-seq提供直接的復(fù)制起源位置和效率數(shù)據(jù),以及復(fù)制時(shí)間的間接估計(jì) (Daigaku等,2015)。
含有雙鏈核糖核苷酸的DNA的堿處理導(dǎo)致磷酸骨架對(duì)核糖的裂解3',產(chǎn)生5'羥基末端。如果變性DNA用作隨機(jī)六聚體引物延伸的模板,則5ê至3ê合成導(dǎo)致鄰近初始核糖的齊平末端。通過(guò)從單鏈DNA產(chǎn)生文庫(kù)并在每個(gè)末端放置不同的索引引物,可以將測(cè)序讀數(shù)定位到單個(gè)鏈,以確定具有單堿基準(zhǔn)確度的原始核糖核苷酸位置。
好處:
單基準(zhǔn)確度
缺點(diǎn):
僅適用于酵母
18.SELEX or SELEX-seq / HT-SELEX
通過(guò)指數(shù)富集的指數(shù)富集/高通量配體系統(tǒng)演化的配體的系統(tǒng)演化
自1990年3個(gè)獨(dú)立小組描述次SELEX實(shí)驗(yàn)時(shí) (Ellington等,1990) (Tuerk等,1990)(Sullenger等,1990),該方法適用于廣泛的范圍技術(shù) (Chen et al。,2016) (Takahashi et al。,2016)。為NGS開發(fā)了一種高度多路復(fù)用的并行HT-SELEX方法 (Jolma等,2010)。SELEX-seq的變體 (Slattery等,2011) 使用Nextera銜接子序列進(jìn)行有效的文庫(kù)制備 (Zhang等,2016)。
在該方法中,蛋白質(zhì)表達(dá)為與pD40htSELEX表達(dá)載體中與高斯熒光素酶綴合的鏈霉抗生物素蛋白結(jié)合肽(SBP)的融合體。每個(gè)DNA配體含有14bp隨機(jī)區(qū)域(14N)和5bp條形碼,其單一地識(shí)別單個(gè)SELEX樣品。部分嵌套的引物用于連續(xù)的SELEX輪次。將含有所有可能的14bp序列的雙鏈DNA混合物與固定在96孔板的孔中的DNA結(jié)合蛋白一起溫育,導(dǎo)致DNA與蛋白質(zhì)結(jié)合。洗滌和洗脫后,通過(guò)PCR擴(kuò)增得到的更具特異性序列的群體并測(cè)序 (Caroli等,2016)
好處:
高通量和率
軟件管道可用 (Hoinka等,2016)(Caroli等,2016)
缺點(diǎn):
可能包含序列偏差
19.HITS-FLIP
采用熒光配體相互作用分析的高通量測(cè)序
HiTS-FLIP是一種在的深度測(cè)量定量蛋白質(zhì)-DNA結(jié)合親和力的技術(shù)。在該方法中,內(nèi)置于高通量測(cè)序儀中的光學(xué)器件用于可視化蛋白質(zhì)與流動(dòng)細(xì)胞中測(cè)序的DNA的體外結(jié)合 (Nutiu等人,2011)。
通過(guò)合成對(duì)具有錨定的單鏈DNA的微流體流動(dòng)細(xì)胞進(jìn)行測(cè)序。剝離第二鏈DNA并使用Klenow聚合酶和未修飾的dNTP重建以形成雙鏈DNA簇。以不同濃度引入熒光標(biāo)記的結(jié)合蛋白,并對(duì)結(jié)合進(jìn)行成像。
好處:
量化和全面
缺點(diǎn):
需要專門的硬件
尚未被科學(xué)界廣泛采用